miércoles, 24 de febrero de 2016

La Geometría Griega

Historia de la geometría
La geometría es una de las ciencias más antiguas. Inicialmente está constituida en un cuerpo de conocimientos prácticos en relación con las longitudes, áreas y volúmenes. La civilización babilónica fue una de las primeras culturas en incorporar el estudio de la geometría. La invención de la rueda abrió el camino al estudio de la circunferencia y posteriormente al descubrimiento del número π (pi); También desarrollaron el sistema sexagesimal, al conocer que cada año cuenta con 360 días, además implementaron una fórmula para calcular el área del trapecio rectángulo.1 En el Antiguo Egipto estaba muy desarrollada, según los textos de Heródoto, Estrabón y Diodoro Sículo. Euclides, en el siglo III a. C. configuró la geometría2 en forma axiomática y constructiva, tratamiento que estableció una norma a seguir durante muchos siglos: la geometría euclidiana descrita en Los Elementos.
El estudio de la astronomía y la cartografía, tratando de determinar las posiciones de estrellas y planetas en la esfera celeste, sirvió como importante fuente de resolución de problemas geométricos durante más de un milenio. René Descartes desarrolló simultáneamente el álgebra de ecuaciones y la geometría analítica, marcando una nueva etapa, donde las figuras geométricas, tales como las curvas planas, podrían ser representadas analíticamente, es decir, con funciones y ecuaciones. La geometría se enriquece con el estudio de la estructura intrínseca de los entes geométricos que analizan Euler y Gauss, que condujo a la creación de la topología y la geometría diferencial.





Geometría
la geometría (del latín geometría, y este del griego γεωμετρία de γῆ gue, ‘tierra’, y μετρία metría, medida) es una rama de la matemática que se ocupa del estudio de las propiedades de las figuras en el plano o el espacio, incluyendo: puntos, rectas, planos, politopos (que incluyen paralelas, perpendiculares, curvas, superficies, polígonos, poliedros, etc.).
Es la base teórica de la geometría descriptiva o del dibujo técnico. También da fundamento a instrumentos como el compás, el teodolito, el pantógrafo o el sistema de posicionamiento global (en especial cuando se la considera en combinación con el análisis matemático y sobre todo con las ecuaciones diferenciales).
Sus orígenes se remontan a la solución de problemas concretos relativos a medidas. Tiene su aplicación práctica en física aplicada, mecánica, arquitectura, geografía, cartografía, astronomía, náutica, topografía, balística etc. Y es útil en la preparación de diseños e incluso en la elaboración de artesanía.




Tipos de Geometría
La geometría absoluta, que es el conjunto de hechos geométricos derivables a partir únicamente de los primeros cuatro postulados de Euclides.
La geometría euclídea, que es la geometría particular que se obtiene de aceptar como axioma también el quinto postulado. Los griegos consideraron dos variantes de geometría euclídea.
Geometría euclídea del plano
Geometría euclídea del espacio
La geometría clásica es una recopilación de resultados para las geometrías euclídeas.
A partir del siglo XIX se llegó a la conclusión de que podían definirse geometrías no euclídeas entre ellas:
La geometría elíptica
La geometría esférica
La geometría finita
La geometría hiperbólica
La geometría riemanniana





DESCUBRIMIENTO  DE LA  GEOMETRIA
Una de las características principales de la geometría que se desarrolló durante la segunda mitad del siglo XIX, fue el entusiasmo con que los matemáticos estudiaron una gran variedad de transformaciones. De ellas, las que se hicieron más populares fueron las que constituyen el grupo de transformaciones que definen la denominada geometría proyectiva. Los métodos aparentemente detenidos en su desarrollo desde la época de Desargues y Pascal, de estudio de las propiedades de las figuras invariantes respecto a la proyección, se conformaron en los años 20 del siglo XIX en una nueva rama de la geometría: la geometría proyectiva, merced sobre todo a los trabajos de J. Poncelet.
Otro aspecto esencial durante este siglo fue el desarrollo de las geometrías no euclideanas. Podríamos considerar fundador de esta geometría al matemático ruso Nicolai Ivanovich Lobachevski (1792-1856). Su obra mostraba que era necesario revisar los conceptos fundamentales que se admitían sobre la naturaleza de la matemática, pero ante el rechazo de sus contemporáneos tuvo que desarrollar sus ideas en solitario aislamiento.
El punto de partida de las investigaciones de Lobachevski sobre geometría no euclideana fue el axioma de las paralelas de Euclides, sin demostración durante siglos. Lobachevski, que inicialmente intentó demostrar dicho axioma, rápidamente se dio cuenta que ello era imposible, sustituyendo dicho axioma por su negación: a través de un punto no contenido en una recta se puede trazar más de una paralela que yace en el mismo plano que la primera.
El año 1826 puede considerarse como la fecha de nacimiento de esta geometría no euclideana o lobachevskiana, siendo en ese año cuando el autor presentó muchos de los trabajos que avalaban la nueva teoría.
En 1829 Janos Bolyai (1802-1860) llegó a la misma conclusión a la que había llegado Lobachevski. E incluso el mismo Gauss que apoyaba y elogiaba a escondidas, nunca de forma pública, los trabajos de Bolyai y Lobachevski, es posible que mantuviera los mismos puntos de vista pero los calló por temor a comprometer su reputación científica.


APORTACION DE LOS EGIPCIOS EN LA GEOMETRIA
Admitieron Heródoto, Estrabón La Geometría en el Antiguo Egipto En donde Geometría alude a "medir la tierra". Estaba muy desarrollada, como y Diodoro, comentando que los egipcios habían inventado la geometría y la habían enseñado a los griegos.
Los egipcios calculaban correctamente superficies de cuadriláteros, triángulos y tenían una buena aproximación al área del círculo.
Igual que la aritmética, era una ciencia eminentemente práctica que ofrecía soluciones concretas a diversos problemas. Los papiros de textos de matemática que han perdurado, destinados a la educación de los escribas, no dan justificación alguna de los métodos de cálculo empleados, limitándose a explicar las operaciones que hay que realizar.

Los  egipcios calculaban correctamente superficies  de cuadriláteros, triángulos y tenían una buena aproximación al  área del círculo. Igual  que la aritmética, era  una ciencia eminente practica que ofrecía soluciones concretas a diversos problemas…..